Science One Team

Science One brings together award-winning instructors from across the disciplines, providing a challenging, collegial and interdisciplinary experience for students and team members alike.

Science One Administration

Chris Addison

Program Director
IKBLC 366A
Chemistry
addisonc@chem.ubc.ca
(604) 827-4735

James Charbonneau

Assistant Director
IKBLC 364
Physics and Astronomy
james@phas.ubc.ca
(604) 827-2378

Lucia Balabuk

Program Administrator


science1@mail.ubc.ca
604-822-5552

Biology

Kathryn Zeiler

(604) 822-3348
kathryn.zeiler@botany.ubc.ca

James Berger

berger@zoology.ubc.ca
604-822-4307

Celeste Leander

cleander@interchange.ubc.ca
604-822-0911 or 604-827-5608

My primary teaching interest is in first-year biology. My research is on the evolution and diversity of the Labyrinthulomycota, a small group of marine fungal-like protists.

Chemistry

Chris Addison

addisonc@chem.ubc.ca
(604) 827-4735

Elliott Burnell

elliott.burnell@ubc.ca
604-822-2603

Nuclear magnetic resonance (NMR) has become an important technique for the study of molecular systems, and in recent years both liquid and solid type NMR experiments have been applied to ordered fluids, including liquid crystals, soaps, biological membranes, and solute molecules partially oriented in liquid-crystal solvents. Dr. Burnell's research exploits these NMR methods to investigate liquid crystalline systems.

Math

Costanza Piccolo

costanza@math.ubc.ca
604-827-3032

Stephen Gustafson

gustaf@math.ubc.ca
(604) 822-3138

My research applies mathematical analysis to gain a rigorous understanding of solutions of (nonlinear, partial) differential equations. Of particular interest are equations modelling dynamical (often wave-like) behaviour in diverse physical systems such as fluid interfaces, condensates, lasers, superconductors, ferromagnets and liquid crystals.

Physics

James Charbonneau

james@phas.ubc.ca
(604) 827-2378

Robert Rassendorf

rraussendorf[at]phas[dot]ubc[dot]ca
(604) 822-3253

My research interest is in quantum computation, in particular computational models. One object of study in this field is the one-way quantum computer, a scheme of quantum computation consisting of local measurements on an entangled universal resource state. The questions I ask are ``What are the elementary building blocks of the one-way quantum computer? What is their composition principle?'' I hope that the answer to these questions will give clues for how to construct novel quantum algorithms. Another model of quantum computation that I study are quantum cellular automata (QCA). I am, for example, interested in the question of whether and what type of quantum algorithms can be encoded the shape of the boundary of a finitely extended quantum cellular automaton.